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This article will give a short outline on the theory of groups and should hopefully be accessible to the
layperson.
Groups are one of the most fundamental aspects of higher level mathematics and aside from being the
core element of abstract algebra they appear in nearly every aspect of pure mathematics.

We define a group as follows: G = (G, ∗) is a group if

• G is a non-empty set of elements
• ∗ is an associative, closed, binary operation.
• There exists an identity element in G (often denoted e) such that for all g in G, we have
e ∗ g = g = g ∗ e.
• For all elements g in G there exists an inverse (denoted g−1) such that g ∗ g−1 = e = g−1 ∗ g.

I will expand on this definition by giving a basic example of group.

Consider the set of all integers, often denoted by Z from the German “Zahlen” for number. This set
consists of all whole numbers ranging . . . ,−4,−3,−2,−1, 0, 1, 2, 3, . . . If we consider our operation ∗
to be the usual addition operator + that we are familiar with then this forms a group (Z,+). We can
inspect this group and prove our claim.
The operation + is both associative and closed in this case. Associativity is the property that order
of operations through brackets does not affect the end result. For any integers a, b, c we can see that
(a + b) + c = a + (b + c). The operation is also closed, meaning that if we add any two integers we
will always arrive at another integer (another element of our set of elements Z), i.e., we cannot add two
whole numbers to arrive at a number which isn’t also a whole number. We can also see that the +
operation is binary, i.e., that it involves exactly two elements.
To prove this is a group we then show that an identity exists and that inverses exist. The identity in
this case is the number 0, as a + 0 = a = 0 + a, and that inverses exist and we have a−1 = −a, giving
a + (−a) = 0 = (−a) + a.

Another infinite group you should be familiar with is the set of all real numbers, less zero, and the mul-
tiplication operation (which is denoted by (R\{0}, ·)) here we see that the product of any two non-zero
reals is also a non-zero real, the identity is the number 1, and for any element x the inverse is 1/x.

Thus we have our first basic examples of a group, and one that should be easy and familiar. There are
some equally simple and easy to understand groups.

The trivial group consists of one element, the identity. This is the smallest possible group and to con-
sider this you may think of the underlying set to consist only of the number 1, and the operation to be
multiplication.

The next smallest group consists of two elements. There are multiple ways to consider this. You may
think of it as the set {1,−1} and the multiplication operation ∗. Again in this example the identity is
the element 1 and every element is it’s own inverse. Another way to consider this group is by thinking
of Z2 under addition, or the integers modulo 2. This is a fancy way of saying that 2 is equivalent to 0.
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This means we get the unfamiliar equation of 1 + 1 = 0.

To make this clearer we can construct what is known as a group table, here are the group tables for the
previous 3 groups.

T =
∗ e
e e

, G2 =
∗ 1 −1
1 1 −1
−1 −1 1

, Z2 =
+ 0 1
0 0 1
1 1 0

If you look closely you can see the two groups with two elements are in similar. In fact these groups
are considered isomorphic, which means they are identical up to labeling (this will be discussed later).
In fact any group of size 2 must be isomorphic to this group (similarly there is only one trivial group of
size 1).

One of the groups we have seen thus far gives rise to an infinite family of groups. In our Z2 group
we can replace the 2 with any positive integer m to gain a group Zm of that size, known as the cyclic
group of order m. Cyclic groups can be considered as an operation on a polygon with m sides. For Z4

we consider rotation of a square with labelled corners, with the elements 0, 1, 2, 3 being equivalent to
rotating by 0◦, 90◦, 180◦, 270◦ respectively. After each operation we still have a square, but the corners
are now in different places; if we ’add’ 1 + 3 we get 90◦ + 270◦, which brings us back to our original
position (noting that 3 = 1−1 in this group.)

Here I show the group tables for the cases where m = 3 and 4.

Z3 =

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

, Z4 =

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Again the group of order 3 is unique up to isomorphism, however there are 2 non-isomorphic groups of
size 4. The second is known as the Klein-4 group and is denoted as V4.

V4 =

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

If we wish to visualize this we can consider rotations and reflections of a non-symmetric figure. The
identity (e) leaves it unaffected, one element (a) rotates 180◦ around the centre, another element (b)
reflects down a vertical axis, and the 4th element (c) first rotates, then reflects. We can see that all
a2, b2, and c2 will bring us back to the original figure, and that the other relations a ∗ b = c, a ∗ c = b
etc hold.

One of the properties you may have noticed in all examples so far is that every group table is symmetric,
or that every element commutes, that is to say that for all elements seen so far it hasn’t mattered whether

2



we’ve gone a ∗ b or b ∗ a as a ∗ b = b ∗ a. This property is known as being ‘abelian’ and is true for all
cyclic groups. There are however groups which do not possess this property. If we this time consider an
equilateral triangle with labelled vertices and the operations of rotating each vertex one place (r) and
holding one vertex while swapping the other two (s) we end up with this group table:

S3 =

∗ e r r2 s rs r2s
e e r r2 s rs r2s
r r r2 e rs r2s s
r2 r2 e r r2s s rs
s s r2s rs e r2 r
rs rs s r2s r e r2

r2s r2s rs s r2 r e

This group is known both as the Symmetric Group S3 and the Dihedral Group D6. The dihedral groups
are the second major family we shall see and for each D2n we have 2n elements acting as the rota-
tions/reflections of an n sided polygon.

This should hopefully give you some insight as to what the definition of a group is and how it works.

Now we move onto some basic theorems and facts.

Theorem. Basic facts about groups:

(1) The identity element is unique
(2) Inverses are unique
(3) (a−1)−1 = a

Proof. (1) Suppose we have two identity elements e and e′. Then by the definition of identity we
have that e ∗ e′ = e and e ∗ e′ = e′ therefore e = e′

(2) Assume a has two inverses b and c then we have a ∗ b = e = c ∗ a we get that

c = c ∗ e
= c ∗ (a ∗ b)
= (c ∗ a) ∗ b
= e ∗ b
= b

(3) By above a has a unique inverse a−1. If we switch the roles of a and a−1 we see that a satisfies
the definition of an inverse of a−1.

�

Subgroups. An important concept in group theory is that of a subgroup. For anyone who’s studied
mathematics before a subgroup is what you’d expect. Given a group G a subgroup H consists of a
subset of the original set G such that its elements form a group. This is equivalent to stating that the
subset H is closed under the group operation ∗. We denote this H ≤ G.

Example. Every group has two trivial subgroups. Firstly the group itself is considered a subgroup,
secondly the identity element forms a subgroup isomorphic to the trivial group on one element.

Looking for more interesting examples we go back to our earlier group Z4, we see that if we consider
only the elements {0, 2} we create a subgroup isomorphic to Z2. (We check by inspecting closure and
see that 0 + 0 = 0, 0 + 2 = 2 + 0 = 2 and 2 + 2 = 0 are all members of our subgroup). This is the only
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non-trivial subgroup of Z4, if we inspect V4 we see that 3 non-trivial subgroups exist {e, a}, {e, b}, {e, c}.
This acts as a proof that V4 and Z4 are in fact different (non-isomorphic) groups of the same size.

Considering the group D6 we can see four subgroups, one formed by taking only the rotation elements
{0, r, r2} and three more by taking the symmetric element {0, s}, {0, rs}, {0, r2s}. In fact for any di-
hedral group Dn we will find two subgroups one of the form {0, r, r2, . . . , rn−1} and the others being of
the form {0, rns} for values of n in the range {0, . . . , n}

Homomorphisms and Isomorphisms. A homomorphism is a mapping from one group into another
which preserves the group operation, that is for two groups (G, ∗), (H,�) and a mapping f : G → H
we have for all a, b in G that f(a ∗ b) = f(a) � f(b). An isomorphism is a homomorphism that sends
each element to a unique element.

Example. If we consider two groups from earlier Z4 and G2 and the mapping:

f(0) = 1 f(1) = −1

f(2) = 1 f(3) = −1

Then this produces a homomorphism. We can check this easily e.g., f(0 + 1) = f(1) = −1 = 1 ∗ −1 =
f(0) ∗ f(1).
For an example of an isomorphism we use the group G2 and Z2 and the mapping:

g(1) = 0 g(−1) = 1

This is clearly an isomorphism.

There are several facts about homomorphisms and isomorphisms but the only ones I will state here
without proof are that any homomorphism f : G → H must send the identity element of G to the
identity of H.
For any isomorphism the size of G and H must be equal.

Some other interesting groups:
Mentioned previously the symmetric group on n elements is denoted Sn and is the group of all permu-
tations of n elements under composition. In fact every finite group can be presented as a subgroup of
some symmetric group.
The general linear group of order n is the group of all invertible matrices of size n by n over some field
F under matrix multiplication (given that you know what a field and matrix is this should be obviously
a group).
The Rubik’s Cube Group is the set of all possible moves on a Rubik’s Cube with the composition op-
eration (performing moves in a certain order). This group has size 43, 252, 003, 274, 389, 856, 000.
However this pales in comparison to the Monster Group which has size

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000

and was predicted to exist from theory several years prior to being computationally verified.
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